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NUMERICAL STUDY OF ROTATING TURBULENCE WITH EXTERNAL FORCING

P.K. YEUNG* AND YE ZHOU?

Abstract. Direct numerical simulations at 2563 resolution have been carried out to study the response of

isotropic turbulence to the concurrent effects of solid-body rotation and numerical forcing at the large scales.

Because energy transfer to the smaller scales is wcakened by rotation, energy input from forcing gradually

builds up at the large scales, causing the overall kinetic energy to increasc. At intermediate wavenumbers

the energy spectrum undergoes a transition from a limited k -5/3 inertial range to k -2 scaling recently

predicted in the literature. Although the Reynolds stress tensor remains approximately isotropic and three-

component, evidence for anisotropy and quasi- two-dimensionality in length scales and spectra in different

velocity components and directions is strong. The small scales are found to deviate from local isotropy,

primarily as a result of anisotropic transfer to the high wavenumbcrs. To understand the spectral dynamics

of this flow we study thc detailed behavior of nonlinear triadic interactions in wavenumber space. Spectral

transfer in the velocity component parallel to the axis of rotation is qualitatively similar to that in non-

rotating turbulence; however the perpendicular component is characterized by a greatly suppressed energy

cascade at high wavenumbers and a local reverse transfer at the largest scales. The broader implications of

this work are briefly addressed.

Key words, direct numerical simulations, rotating turbulence, anisotropy and quasi- two-dimensionality

Subject classification. Fluid Mechanics

1. Introduction. Turbulent flows subjected to solid-body rotation occur in many engineering and

geophysical applications, such as in turbomachinery with rotating blades, and in problems involving the

rotation of the Earth. The effects of rotation (through a Coriolis force) on turbulence structure arc known

to be subtle, yet profound: although it has no direct role in thc kinetic energy budget, rotation weakens the

fundamental property of an energy cascade from the large scales to the small scales (e.g., Bardina et al. [1],

Mansour et al. [2]). However, as pointed out by Speziale [3] most classical turbulence models have been

developed without accounting for Coriolis forces and consequently they perform poorly in rotating flows

which require the use of non-inertial frames of reference. Recognition of these limitations has provided much

motivation for recent work (e.g., Refs. 4-7) aimed at incorporating rotation effects in modeling.

From the viewpoint of physical understanding (and modeling at a fundamental level), a most important

test case is that of initially homogeneous isotropic turbulence subjected to uniform rotation, free of other

complicating effects. Because of difficulties (cited by Jacquin et hi. [8]) in achieving these conditions in

experiments (e.g. Wigeland & Nagib [9]), numerical simulation is an attractive approach (Speziale & So [10]).

Both direct and large-eddy simulations (DNS and LES), supported by experimental data (Jacquin et al. [8]),

demonstrate that demonstrate that [1,11] as a result of reduced energy transfer, strong rotation also leads to

*School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332. This research was supported in part

by NSF Grant No. CTS-9307973.

? Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA 23681

and IBM Research Division, T.J. Watson Research Center, P.O. Box, 218, Yorktown Heights, NY 10598. This research was

supported by thc National Aeronautics and Space Administration under NASA Contract Nos. NAS1-19480 and NASI-97046

while the second author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE),

NASA Langley Research Center, Hampton, VA 23681.



reduced energy dissipation rates. On the other hand, the dynamics of the resulting anisotropy development

is less well established. Most of the available data indicate that the Reynolds stress tensor ((uiuj)) remains

approximately isotropic: for instance, Speziale et al. [11] and Mansour et al. [2] observed linear isotropic

decay by viscosity as the nonlinear energy transfer is greatly reduced. However, anisotropy can still be

manifested in greatly increased length scales along the axis of rotation (Jacquin et al. [8], Mansour et

al. [2], Cambon et al. [12]). This quasi- two-dimensional state differs from the classical Taylor-Proudman

Theorem [13], in which all nonlinear terms are neglected.

It may be noted that most of the numerical simulations cited above were performed for decaying isotropic

turbulence at low Reynolds numbers without an inertial range. A common approach to increase the Reynolds

number is to supply energy through numerical forcing to compensate for the effects of viscous decay. At

the same time, beeausc the primary effect of rotation is to modify the energy transfer to smaller scales, it is

illuminating to examine how turbulence under rotation responds to a source of energy input at the largest

scales of the flow. In low-resolution simulations Hossain [14] has found that energy input at intermediate

scale sizes can lead to strong-dimensionalization and an inverse cascade to the largest scales. However, to

fully describe the nature of the nonlinear energy transfer it is essential to address the detailed behavior

of triadic interactions in wavenumber space, which represent elemental couplings within groups of Fourier

modes whose wave-vectors form closed triangles (Brasseur & Corrsin [15]). In the case of non-rotating

turbulence, analyses of DNS databases (Domaradzki & Rogallo [16], Zhou [17]) have provided considerable

insights concerning the roles of different scale sizes in the energy transfer process. Naturally, knowledge of

these nonlinear scale interactions has implications (Domaradzki & Liu [18], Zhou & Vahala [19]) for large-

eddy simulations in which the effects of the small scales on the large scales must be modeled, and indeed

this has been used to devise a new approach in sub-grid scalc modeling (Refs. 20, 21). In contrast, current

understanding of spectral transfer in rotating turbulence is much less complete, and no similarly detailed

analysis of triadic energy transfer based on DNS is currently known. Yet the value of a spectral approach for

rotating turbulence is evident in EDQNM closure theories (Cambon & Jacquin [22], Cambon et al. [23]).

Our objectives in this paper are to study the response of isotropic turbulence under uniform solid-body

rotation in the presence of external energy input at the large scales, and to examine the spectral dynamics

underlying this response. Direct numerical simulations with 2563 grid points are carried out using Fourier

pseudo-spectral methods. Initially the Taylor-scale Reynolds number (R_) is about 140, which is sufficiently

high for a limited k -5/a inertial range to exist in the energy spectrum, with a value of the Kolmogorov

constant in good agreement with experiment (see Yeung & Zhou [24]). Subsequently the spectrum is found

to undergo a transition to k -2 scaling, as predicted by a recent phenomenological theory ([25]). A substantial

part of this paper is devoted to a comprehensive description of the development of different anisotropy

measures in both physical and spectral space. We attempt to explain the observed behavior through analyses

of Reynolds stress budgets and triadic energy transfer, where differences with non-rotating turbulence will

be emphasized. In particular, at both low and high wavenumbcrs wc distinguish between energy transfer for

velocity components parallel and perpendicular to the axis of rotation.

The remainder of this paper is organized as follows. In Scc. II we briefly review the relevant mathematical

background and the numericM method. Results are given in Sec. III, within four subsections which focus

respectively on (a) the evolution of kinetic energy and dissipation rate, (b) anisotropy measures, (c) budgets

for the Reynolds stress tensor and (d) spectral transfer analyses. In See. IV we summarize our results and

discuss briefly the possible wider implications of this work. An Appendix addresses the coupling of numerical

and physical effects responsible for early-time transients in the DNS data.
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2. Background and numerical method. We consider incompressible turbulence subjected to uni-

form solid-body rotation at rate _ but without mean velocity gradients. In general rotation gives rise to both

centrifugal and Coriolis forces, but in this case when the motion is viewed in a rotating framc of rcfercncc

only the Coriolis force is relevant. The fluctuating momentum equation in usual Cartesian tensor notation

is

Ou_ Oui 10p 02ui

(1) o-Y+ oz---]= p + + £,

where eijk is the alternating symbol and f is an additional external force to be specified. Because the initial

conditions are isotropic, the orientation of_ is statistically immaterial; for definiteness we take _ = (0, 0, _).

The effects of rotation on the Reynolds stress and energy spectrum tensors are important in this work.

With the use of homogeneity in space, the Reynolds stress budget equation can be written as

dRij _ Hij _- Wij - Dij + F_j ,(2) dt

where Hij = (2/p)(psij) represents the (slow) pressure-strain correlation,

(3) Wij = 2_[cik3(ujuk) -4-ejk3(UiUk)]

(with the choice of _ above) is the rotation term, D_j = 2u((Oui/OZk)(Ouj/OXk)) is the dissipation tensor,

and F_j = ((uJj + ujfi)) is the rate of change due to the external force. Both IIij and W,j are traceless

and hence represent important intercomponent transfcr processes, although they influence the kinetic energy

budget only indirectly. The pressure fluctuation field can be obtained by solving (in pseudo-spectral manner)

the Poisson equation

p Oui Ouj Ouj(4) V2( ) = Oxj Oxi + 2_eij3 _qxi

For convenience we note here that the only non-trivial components of Wiy are:

(5) WIt = 4_2(UlU2), W22 = -4n(ulu2), W12 _- W21 = 2n((u 2) - (_12)) •

The ratc ofchange ofthe kineticenergy K = ½(uiui)isgiven by

(6) dK/dt = F - e,

where _P = -1F_2,, is the forcing energy input rate, and e is the dissipation rate. As to be shown later, both

terms in this equation are strongly influenced by rotation.

With the choice _ = (0,0,12), the Fourier-space equivalent of Eq. 1 for the transformed velocity at

wave-vector _kcan be written as

(° )(7) -_ + uk 2 di(k_, t) - 2Pij(k)ejl3afit(k) = -Pij(_k)/7/i(_k) -4-]i(_k) ,

where carets denote Fourier coefficients, Hi = O(uiuj)/axj is used as a shorthand for the nonlinear term, and

the tensor P_j (k) = kikj/k 2 - 5ij represents projections onto the plane perpendicular to k in wavenumber

space. The evolution equation for the energy spectrum tensor, defined as Eij (k, t) -- ½(_iub* + _i*u)) (where

asterisks denote complex conjugates) can be written in a form corresponding to Eq. 2, as

(s) (k, t)
Ot = T,j (k_k_)+ Ai3 (k_) - Dij (k_) + Fi3 (k_) ,



whereTq(k) represents energy transfer by the nonlinear terms,

(9) Aq (k) = fl_l,,a [P_t (k)Eim (k) + Pit (k)Ejm (k)]

represents Coriolis terms, Dij(k) = 2vk2Eij(k) is thc dissipation spectrum tensor, and Fq (_k) = Re[(dJ/* +

di*]j)] represents the forcing contributions. It is well-known that in homogeneous turbulence Tq (_k) has the

property of a vanishing integral over all wavenumbers for every pair of subscripts. On the other hand, Aij (k)

has a non-vanishing integral but zero tracc at every wavenumbcr mode. In other words, whereas Tij(_k)

represents spectral transfer between different scales, Aij (_k) represent transfer between different components.

Unlike its physical-space counterpart (Wq, see Eq. 5), all three diagonal elements of Aij (_k) are non-trivial,

specifically

A ll (_k) = f_ [Pll (_k)E12 (k) - P12 (_k)El_ (_k)],

A22 (_k) = f_[P12 (_k)E22 (_k) - P2_ (_k)E_2 (_k)],

(10) A33 (k) = f_ [P13 (k)E23 (k) - P23 (k) E13 (k)] .

In numerical simulations it is usual practice to collect the spectral quantities appearing in Eq. 8 into

spherical shells of radius k (and thickness Ak = 1), effectively as functions of the wavenumber magnitude

(k = ]k[). The transfer spectrum T(k) = ½Tii(k) can be written in full as

(11) T(k)= _ Im k_Pq(k_')di*(k') '=p+q .
k- ½_k_<Ik_'l<k+½ak

Here the convolution integral on the r.h.s, signifies the collection of all possible triads (k',p, q) that can be

formed in wavenumber space with _k' belonging to the designated wavenumber shell. The effects of different

scale sizes on the transfer at scale 1/k can be compared in terms of the detailed transfer function T(klp ,q)

(Domaradzki & Rogallo [16]), which is the partial sum of triadic terms with one "leg" of the triad in a shell

centered on p and the other centered on q. Furthermore T(klp ) is the sum of all contributions with at least

one leg in the prescribed band p. These quantities are related by

(12) T(k) = _ T(klp ) = _ Z T(klP' q)"
P P q

Similar definitions and relations apply to the component transfers (e.g., 7'11(k)), which are obtained simply

by suppressing the summation over the subscript i in the definition (11).

In this work we solve the governing equation (1) numerically, using a massively parallel implementation

(Yeung & Moseley [26]) of the well-known pseudo-spectral algorithm of Rogallo [27]). The time advance is

carried out in wavenumber space, using an explicit second-order Runge-Kutta (predictor-corrector) scheme.

The linear viscous term is treated exactly via an integrating factor in the predictor step. Following Mansour

et al. [2], the time-advance procedure is modified to take account of numerical stiffness difficulties arising

from high-frequency oscillations associated with high rotation rates. Essentially, the simultaneous system

(7) (for i = 1, 2, 3) in Fourier space is solved in a diagonalized form which also allows the linear Coriolis term

to be integrated exactly. This is achieved by introducing a pair of auxiliary variables

1
_1 = _2_- 0.k2_l _ I.k1_)2 - k_53) ,

k12
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(13)
|

_-1 ---- --_--(/,k27)1 - tkl?)2 -t- kv3) ,

_12

where k12 --- _ -+-k 2, _ -- v/-_, and __= fi_cxp(vk2t). The linear terms in the resulting evolution equa-

tions for 41 and _-1 are decoupled and hence can be treated with a new integration factor (of the form

exp(_:2_k3t/k), respectively). For those Fourier modes with k12 = 0 the definitions 13(a,b) are modified to

_1 -- 7)1 - ev2 and _-1 = 7)1+ L_)2, with the integrating factor becoming exp(T2tgtt). Predictor estimates of

are readily recovered from the updated auxiliary variables after each predictor step. Whereas this proce-

dure incurs a a small increase in CPU time per step, it has the important advantage of avoiding the use of

an undesirably large number of time steps that would otherwise be needed to resolve the rotation-induced

oscillations.

In this paper we choose the external force f to be that in the stochastic forcing scheme of Eswaran

& Pope [28]. In this scheme, forcing is applied only to the lowest two wavenumber shells (k <_ 2), and is

known to result in statistical stationarity if rotation were absent. The forcing term has a finite correlation

time, which differs from the Gaussian white-noise forcing used by Smith et al. [29]. Because of the inherent

stochastic variability of this method of forcing, and because rotation leads to increased relative energy

content at the large scales (for which relatively few samples exist in the solution domain), the simulation

results display considerable statistical variability. Consequently, to ensure reliable statistics it is necessary

to perform ensemble averaging over multiple independent realizations. Our results are taken primarily from

an ensemble average of six such 2563 simulations with statistically independent initial conditions.

3. Results and analysis. We present ensemble-averaged statistics from a series of direct numerical

simulations at two rotation rates. The grid resolution is 2563, the initial Taylor-scale Reynolds number is

about 140, and the simulation time period is 6.8 initial eddy-turnover times (TE,o). A conventional non-

dimensional measure of the strength of rotation is given by comparing the rotation time scale (1/_) to the

turbulence time scale (K/e), giving the turbulent Rossby number ROT -- e/(2K_). Comparison with other

time scales representing large-scale and small-scale motions may also be useful, leading to macro- and micro-

Rossby numbers (Cambon et al. [23]) respectively. The definitions and initial and final values of of these

quantities in the simulations are listed in Table I.

Initially the "longitudinal" and "transverse" macro-Rossby numbers (Ro L and Ro L) are approximately

equal, but eventually differ by a ratio of about 1.8. We also include the non-dimensional parameter k_?,

where k_ --- (_a/e)l/2 (first introduced by Zeman [30]) is a characteristic wavcnumber of rotation. A value of

kn_? > 1 indicates that rotation effects extend to scales smaller than the Kolmogorov scale (_), which suggests

(as to be discussed later) the possibility of deviations from classical concepts of Kolmogorov similarity at

the small scales.

Because of computational expense, only two realizations at initial ROT = 0.0039 have been performed,

compared to six for the ROT -_ 0.0195 case. In the paragraphs below we present results first on the evolution

of energy and dissipation rate, including the shape of the spectrum, and then on anisotropy measures in

terms of the Reynolds stress tensor, length scales and component energy spectra. Analyses of Reynolds

stress budgets in physical space and spectral transfer in wavenumber space are then used to help explain the

observed DNS results. Unless noted otherwise (and primarily in Sec. IV.A) the results given below are for

the case of ROT = 0.0195.



TABLE I

Initial and final values of Rossby numbers and related non-dimensional parameters in the simulations.

10.775 10.775 52.75 52.75

t/TE,o 0 5.84 0 5.84

ROT -- e/(2KD) 0.0195 0.0038 0.0039 0.00064

RoL=u_3/(2L33,3f]) 0.0667 0.0278 0.0133 0.00742

Ro L = u'a/(2Lxl,3fl ) 0.0623 0.0155 0.0125 0.00426

Ro _ = 1/(2%D) 0.994 0.448 0.199 0.0872

k_ 0.357 1.177 3.99 13.13

Notes: (1) L3 and u_ are the longitudinal integral length scale and r.m.s, velocity along the axis of rotation.

(2) T_ ---- (V/e) 1/2 is the Kolmogorov time scale.
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intervals in an ensemble of six independent realizations.
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A. Energy and dissipation. The energy and dissipation rate (which are the subjects of K - e model-

ing) provide important global measures of the state of the turbulence under rotation. In Fig. 1 we show the

evolution of these quantities normalized by their initial values, for the rotation rate that yields ROT ----0.0195.

Despite the considerable statistical variability (quantified by the confidence intervals shown), it may be clearly

seen that the kinetic energy initially decreases somewhat, but subsequently rises (approximately linearly)

with time. On the other hand the dissipation rate drops very sharply in the early stages and then remains

nearly constant even as the energy begins to rise. In view of the form of the kinetic energy balance (Eq. 6),
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Fxc. 5. Evolution of second (solid line) and third (dashed line) principal anisotropy invariants of the Reynolds stress

tensor in normalized time t/TE.o, for (from top to bottom) f_ = 1.0, f_ -- 21.55 and f_ = 105.5.

these results suggest that at early times the energy input from forcing is weak, so that the flow is similar

to decaying isotropic turbulence in a rotating frame, with a dissipation rate strongly reduced by rotation

(Speziale et al. [11]). in tKis transient period the flow statistics are also subject to a small numerical artifact

depending on the manner in which the forcing is initiated. This latter issue is discussed in tlaeAppendix.

The observation of increasing K with near-constancy of e at later times is of considerable interest.

Since in wavenumber space e = fo 2z/k2E(k) dk, this observation implies a change in spectral shape -in

particular that the energy spectrum is shifted towards lower wavenumbers, together with a reduction in high-

wavenumber spectral content. A convenient non-dimensional measure of spectral shape is the dissipation
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skewness, defined as (from Batchelor [31])

(14) S,=4 (l_')3/2 fo°°VkaE(k) dk .

(Note: in DNS on an N 3 grid, integrations in wavenumber space are taken only up to the highest resolvable

wavenumber, kmaz = v/2N/3-) In non-rotating isotropic turbulence S, is known to bc about 0.5 (except at

very low Reynolds numbers). Zhou [25] has suggestcd that at high Reynolds number with an extended inertial

range in the spectrum, as rotation rate increases S, should decrease asymptotically to zero in proportion to

_'_- 1/4.

The evolution of S¢ for both rotation rates is shown in Fig. 2. It may be clearly seen that S, is strongly

reduced by rotation, and is characterized by quasi-stationary levels at asymptotically large times. Howcvcr

these "equilibrium" values appear to decrease with rotation rate faster than f_-1/4. This deviation is most

likely due to moderate Reynolds numbers in DNS, so that the assumption of an "extended" inertial range is

not satisfied. It is also worth noting that the statistical variability in S, is small, which in turn implies that

the functional form of the modified energy spectrum in the simulations is relatively robust.

As suggested by Zhou [25], except at very weak rotation rates the classical picture of Kolmogorov

similarity scaling must be modified to include the effects of additional length and time scales due to rotation

in the spectral processes. Such departures from classical results are especially pronounced for the high



rotation case. In this case the characteristic rotation wavenumber (k_) is found to be greater than both the

Kolmogorov wavenumbcr (kn = l/r/) and the highest resolvable wavenumber (kma,) in the simulations, and

consequently rotation effects extend beyond the viscous cutoff in wavenumber space.

In the rotation-modified inertial range, different theoretical arguments have been used in the literature

(Zhou [25] to suggest that for 1/L >> k << k_ (where L represents the large scales) the energy spectrum is

of the form

(15) E(k) = Cn(ef_)I/2k -2 ,

where the value of the constant Cn (if universal) is yet to be ascertained. In Figs. 3 and 4 we show the

development of the normalized spectrum ¢(k) = E(k)(ef_)-l/2k 2 at different times, for both rotation rates

in the simulations. Initially ¢(k) exhibits a short scaling range of slope 1/3, corresponding to the presence of

a (short) k -5/3 inertial range prior to rotation. It can be seen that the simulation data provide fairly strong

evidence of k -2 behavior over a significant range of wavenumbers. If all requirements for a rotation-modified

inertial range wcrc met then the height of a plateau in ¢(k) over an appropriate wavenumber range could

be used to infer the value of Ca. In this way our estimates for Cn are about 1.2 and 1.0 respectively for

ROT = 0.0195 and 0.0039. Admittedly, the Reynolds number in the simulations may not be high enough

for an accurate determination of Cn. Yet we may note that these values are closer to the phenomenological

estimate C_ 4 _ 1.42 (where CK _ 1.6 is the Kolmogorov constant) by Zhou [25] than higher values proposed

by Canuto & Dubovikov [32].

Because the small scales receive their energy primarily from the large scales, the present observations of

reduced dissipation rate and a more negative exponent for the inertial range spectrum are strong indicators

of reduced spectral transfer, which is to be studied further in Sec. IV.D.
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FIG. 9. Same as Fig. 8, but at at t/TE,o = 3.4 (half-way through the simulation period). 7)'iangles, circles and squares

denote c_ = 1, 2, 3 respectively.

B. Anisotropy measures. Here we examine the degree to which turbulence becomes anisotropic (or

remains isotropic) under the effects of rotation. Both physical- and spectral-space quantities containing

length scale information are considered.

In second-order modeling the behavior of the Reynolds stress anisotropy tensor, bij -= (uiuj)/2K- 1/35ij

is very important, especially in terms of its second and third principal invariants (Lumley & Newman [33]).
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In Fig. 5 the evolution of these invariants are presented in the form

\//1 ,_1/2 (_ )1/3(16) I2 = (-_bijbji) ; I3 = b,#bjkbk,

The numerical factors and exponents here are chosen such that both /2 and /3 are equal to 1/3 in the

hypothetical limit of one-dimensional turbulence; /2 is a non-negative measure of the degree of anisotropy,

whereas the sign of/3 indicates whether the P_j has one or two dominant eigenvalues. It should be noted

that even in nominally isotropic turbulence some anisotropy is expected for spatially-averaged statistics at:
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instantaneous time. A striking effect of rotation on/3 is to cause rapid oscillations in sign which vary accord-

ing to the rotation time scale 1/_ (and are indicative of phase-scrambling effects [34]. Yet the anisotropy

levels in this figure under rotation are not appreciably greater than those found in (nominally) isotropic

turbulence without rotation. Consequently we may infer that the Reynolds stress tensor indeed remains,

at least to a good approximation, isotropic and three-component. However, because componentiMity and

dimensionality are not equivalent concepts (Reynolds & Kassinos [35]), this finding does not preclude the

development of quasi- two-dimensional characteristics.

The issue of quasi- two-dimensionality can be addressed by a comparison of length scales in different

coordinate directions. Figure 6 shows the evolution of the transverse integral length scales, defined as (with

no sum over Greek subscripts)

fo(17) L_,Z -- <u_u_) <u_(x)u_(x + re#)) dr,

in terms of the two-point correlations along the direction of the unit vector _ez (with c_ #/3). The reasons for

temporal oscillations are the same as in Fig. 5. In isotropic turbulence all six components (as c_ ranges from

1 to 3, with a _ j3) are statistically identical. The present data shows, however, that rotation causes the

length scales along the axis of rotation (namely Ln,3 and L22,3) to grow steadily over time, becoming much

larger than the others. On the other hand, Lll,2 and L22,i representing motions in the plane normal to the

rotation axis (2) are relatively small, whereas the length scales L33.1 and L33,2 of the velocity component

aligned with __ are about the same as prior to rotation. These observations suggest that the large scale

motions are lengthened along the axis of rotation but more compact within the plane orthogonal to this axis.

We note also that the longitudinal integral scale, L33,3 along the axis of rotation also increases with time,

and that longitudinal and transverse scales in this direction are all approximately equal at later times.

There may be some concern that as the integral length scales Lll,3, L22,3, and L33,3 grow to values

comparable to the length of the solution domain, the simulation results may be influenced by the use of
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periodic boundary conditions (Squires et hi. [36]). In this paper our strategy is to limit these effccts

by restricting the length of the simulation time period. Nevertheless, it is clear (e.g., Figs. 1, 2, 5) that

systematic trends arc already well established at times before this numerical effect becomes a significant

issue.

A natural question that arises here is whether the large-scale motions arc associated with vorticity in the

direction of f_. Such a scenario is evidently consistent with thc evolution of componcnt vorticity variances,

shown in Fig. 7. It is clear that vorticity fluctuations are preferentially aligned with the axis of rotation,

although less so towards the end of the simulations. Visualization results by Kimura & Herring [37] also

indicate that rotation tends to create "tube-shaped" vortices.

To investigate anisotropy properties at different scale sizes we show in Figs. 8-9 the radial spectra E_(k)

and V_,_ (k) of the component energy and vorticity variances respectively, at the beginning and half-way point

of thc simulation time period. Consistent with the decrease of dissipation shown in Fig. 1, it may be seen

that at high wavenumbers all components of E_ (k) and V_ (k) are greatly reduced by rotation. Results

at low wavenumbers are subject to uncertainties due to both statistical sampling and temporal oscillations

induced by rotation. Nevertheless, it is clear that the anisotropy characteristics of E_(k) and V_,,,(k)

diffcr significantly. We find that E,_(k) is approximately isotropic in the coordinate components at low

wavenumbers, but clearly anisotropic and dominated by the u3 component at high wavenumbers. On the

other hand, Va_(k) is strongly anisotropic and dominated by its spanwise component at low wavenumbers,

and yet close to isotropic at high wavenumbers. A remarkable feature of this behavior is that whereas the

energy spectrum suggests possible deviations from the concept of local isotropy, this is not reflccted in the

vorticity spectrum. Because single-point variances of both the velocity and the vorticity arc dominated

by contributions from the low wavenumber parts of thc spectrum, the differences seen here also explain the

apparent isotropy of the Reynolds stress tensor (Fig. 6) versus the strong anisotropy of the vorticity variances

(Figs. 8 and 9).

Another test of isotropy in spectral space is to check whether thc longitudinal and transverse components

of the one-dimensional spectra satisfy relations expected of isotropic turbulence. For each velocity component

u_, we shall denote by ELaa(k) and ETa (k) respectively its one-dimensional spectra with wave-vectors taken

in directions longitudinal and transverse to the velocity component itself. At a given wavenumber if isotropy

strictly prevails then the "isotropy coefficients"

(18)
L kdEL(k)/dk

f_(k) = E_a(k)-
2ETa(k)

should be equal to unity. Figurc 10 shows the data for/3(k) at different times, with component averaging

in the x - y plane taken for the transverse spectrum ET(k). In the case of isotropic turbulence deviations

can arise at low wavenumbers because of sampling and limitations and the lack of perfect isotropy of the

solution domain (Yeung & Zhou [24]), and also at the highest few wavenumber bands because of imperfect

resolution and incomplete removal of aliasing errors. The remarkable feature in this figure, however, is the

fact that rotation causes a pronounced drop of fz(k) in all but the lowest few wavenumber bands. This result

is found to be due to EL3(k) taking on a much steeper and negative slope than ET(k) at high wavenumbers.

Similarly significant, albeit less dramatic, departures from isotropy have been found in the data for other

velocity components through _fl(k) and/_(k) (not shown).
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C. Reynolds stress budgets. To provide some insights into the dynamics of the anisotropy (or lack

of) properties of the Reynolds stress tensor, we present here an analysis of the component Reynolds stress

budgets, as expressed in Eq. 2. Because of the temporal oscillations due to rotation (apparent in Figs. 5

and 6) time-resolved results are required in this work. The usual way to calculate Reynolds stress budgets in

DNS is to save velocity fields at regular time intervals, and by solving a Poisson equation extract statistics

of pressure and other quantities in a post-processing manner. However, this approach is not suitable here,

because it would require the archival of an impractically large number of time-dependent three-dimensional

datasets. Instead, we use Eq. 2 to calculate the pressure-strain correlation indirectly. The quantities R,j,

W_j, D_j and Fij are calculated (conveniently) within the simulations at output time intervals separated by

less than one Kolmogorov scale. This small interval size allows the time derivative dR_j/dt to be obtained

accurately by a fourth-order finite-difference scheme, and this is then used to recover II_j from a balance of

the other terms in Eq. 2.

Figure 11(a-d) shows the evolution of the budgets of the Reynolds stress tensor for its four nontrivial

elements, namely R11, R22, R33 and R12. The most prominent featurc is that the pressure-strain (Hij) and

rotational (Wij) contributions are relatively large in magnitude but tend to cancel each other via opposite

signs. Physically, this indicates anisotropizing effects duc to rotation about a specified coordinate axis are

strongly opposed by the isotropizing effects of pressure fluctuations, which are able to re-distribute energy

among the different coordinate components efficiently. Contributions from forcing and dissipation appear to

be relatively small in magnitude for the normal stresses (equivalent to component energies), and essentially

zero for the shear stress R12. The net result of the balances is that the rates of change oscillate rapidly in

time, but deviate only weakly from zero when measured over a time period of the order of several large-eddy

time scales. The lack of a sustained change in R12 from zero (starting from isotropic initial conditions) is

also consistent with the approximate isotropy between the component energies (Ul2) and (u_) as implied by

the results of Fig. 5.

The turbulence kinetic energy balance can be readily examined by taking half of the trace of the results

of Fig. ll(a-c), and this is shown in Fig. 12. Because the tcnsors Hij and Wij are both tracclcss, only

the forcing and dissipation terms remain. Initially, the forcing energy input is essentially zero, since the

stochastic process in the forcing scheme is initialized with a random number seed that is independent of the

velocity field. Consequently, in the initial period the turbulence decays, although this decay rate is quickly

reduced because of a rapid decrease in dissipation. This transient period ends when the forcing energy input

attains a quasi-steady state (with strong fluctuations in time) with generally positive values, whereas the

dissipation approaches a virtually steady asymptotic value. The net result is a quasi-constant positive rate

of change, which explains the approximately linear growth of the kinetic energy seen in Fig. 1.

D. Spectral dynamics and energy transfer. As stated in Sec. I, the modification of nonlinear

spectral energy transfer is a major physical aspect of rotating turbulence. Here we examine this process in

some detail, including transfers in each velocity component and the roles of different scale sizes.

To provide the basis for comparisons we first show, in Fig. 13, the decomposition T(k) = _ T(k[p) (sec

Eq. 12) at time t = 0 before rotation. The curves shown are broadly similar in appearance to established

results [16,38] for non-rotating turbulence. The variation of T(k) (the dashed line) with wavenumber indicates
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thatthelargescalesloseenergyactively,andthatenergyistransferredto smallerscalesinacascadereaching
intothchighestoctavein wavcnumberspace.Theintensityofenergylossfromthelargescalesisamplified
herebecauseofenergyinputfromforcingat thesescales.Athighwavenumbersthecascadecharacterof the
transferis manifestedin thefunctionT(klp ) showing a sequence of successive peaks of opposite signs. For

instance, curve E shows that interactions involving at least one Fourier mode in the range 16 < p < 32 tends

to remove energy from modes with wavenumber k lower than thc mid-point of the [16, 32] interval, but to

add energy to wavenumbers higher than this threshold. The relative sharpness of both positive and negative

peaks also imply that modes differing widely in scale size exchange energy only weakly. Furthermore, by

considering geometric constraints (based on the triangle inequality) in wavenumber space as well as the

detailed triadic decomposition T(klp ) = _q T(klp , q) it can be established that energy transfer at high

wavenumbers is dominated by nonlocal triadic interactions involving the coupling of two high-wavenumber

modes via a low-wavenumber modc.
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part ofthe-figure. = _: ............ ......

A contrast is apparent in Fig. 14 which shows energy transfer under rotation at the end of the simulations

(t/TE,O = 6.8), plotted on the same scales as t = 0 results in Fig. 13. Alth0figh the kinetic energy levels

at these two time instants are almost the same (see Fig. 1), it is clearly seen that the magnitude of energy

transfer activity, in both T(k) and the T(klp)'s, is greatly reduced. The large scales now lose only a small

amount of energy, and the energy cascade is hardly felt beyond about k = 32. The effect of the largest scales

on the intermediate scales (in a logarithmic sense) has also become almost minimal: for example, lines A

and D now indicate that interactions involving modes in the ranges 1 < p < 2 and 8 < p < 16 together no

longer contributes significantly to the net transfer to or from modes k in the other range.

The observation of approximate isotropy in the energy spectrum at low wavenumbers but not the high

wavenumbers (see Fig. 9) suggests that the spectral transfer transfer towards the smaller scales under rotation

may be significantly anisotropic. This anisotropy is indeed confirmed in Figs.15 and 16 which shows the
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parallel to f_ (a = 3) Dataset and symbols are the same as in Fi9.14

transfers respectively for the velocity components parallel (u3) and perpendicular (ul and u2, with component

averaging) to the axis of rotation. It may be seen that energy transfer in the parallel component is by far the

strongest, and that it retains some of the forward cascade characteristics of energy transfer in non-rotating

turbulence. On the other hand, at high wavenumbers the energy cascade for the perpendicular components is

virtually shut off. Consequently, the energy that is transferred towards higher wavenumbers resides primarily

in the parallel component; this may be regarded as providing an explanation for the anisotropy in the high-

wavenumber energy spectrum seen in Fig. 9.

Besides a weakened cascade, the energy transfer in the perpendicular components has another important
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identified in top part of the figure.

characteristic. In Fig. 16 it may be seen that the net transfcr (dashed line) for {he lowest wavenumber shell

(1 _< k < 1.5, plotted at k = 1) is positive, with the largest contributions coming from the range 2 < p < 4

(line B). This is a clear indication of a reverse energy transfer, or inverse cascade, which tends to carry energy

towards lower wavenumbers in the spectrum. Because the triangle inequality requires that the remaining

leg of a triad with two short legs must also be short, this reverse transfer is apparently the result of local

interactions among the large scales.

For a more detailed comparison of the component energy transfers we examine the triadic decomposition
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T(klp) = _ T(klp, q) in component form for selected ranges ofp. To illustrate the typical results we consider,

for velocity components parallel (Figs. 17 and 18) and perpendicular (Fig. 19) to _, this decomposition for

(a) the low-wavenumber range 2 < p < 4 which contributes most to the inverse cascade effects above, and

(b) the higher wavenumber range 16 < p < 32 where the cascade to the small scales is of primary interest.

The different plotting scales used in each sub-figure reflect the difference in magnitudes for the data in each

case. In Figs. 17 and 18 it may be seen from the sign of T(klp, q) that the parallel component displays typical

forward transfer behavior, with energy removed from lower wavenumber shells (if k < p, q) and deposited

in higher wavenumber shells (if k > p, q). In particular (Fig. 18) it is evident that at high wavenumbers

nonlocal interactions (line A, in the range with 16 < k,p < 32 but 1 <: q < 2) contribute the most to

the energy cascade. On the other hand, Figure 19 indicates that the perpendicular velocity modes in the

lowest wavenumber shell (centered on k = 1) receives the greatest amount of reverse transfer from triads

with both of the other legs in the range 2 <: p, q < 4 (line B). Furthermore, as seen in Fig. 20 this reverse

transfer property is shared by nonJocal interactions with 1 < k < 2 but p and q in higher-wavenumber ranges

(16 < p, q < 32, line E) as well. Yet these nonlocal contributions are apparently much weaker in magnitude

than the local interactions suggested by Fig. 19.

The emphasis of the present discussion has been on the anisotropic aspects of energy transfer under

rotation. Another aspect of interest concerns the degree of locality or nonlocality of the transfer, in terms

of the range of scales that contribute to a dominant class of the scale interactions. It has been noted in

previous literature on non-rotating turbulence (Zhou [17], Zhou et al. [39]) that this latter issue is best

addressed by classifying the triadic contributions by a single scale disparity parameter (s) defined to be the

ratio between the longest side and the shortest side of each triad. The resulting quantity, T(k[s), is very

difficult to calculate (Yeung [40]) but can be estimated from the T(k[p, q) data collected over octave bands

(as presented in the figures). Approximate calculations from the current data support the view (Brasseur &

Wei [41], in non-rotating turbulence) that "distant" interactions with s > 10 contribute relatively little to

energy transfer.
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Finally, it should be noted that although the anisotropizing tendency of spectral transfer is well estab-

lishcd from Figs. 15 and 16, anisotropy characteristics in wavenumber space ultimately depend on a balance

of competing terms (see Eq. 8). At high wavenumbers (where forcing is absent) we can write balance equa-

tions for the component spectra parallel and perpendicular to _ (Eli(k)) and E±(k) respectively) in the
form

(19) dEll (k) _ TII(k) + All (k) - Oil (k)
dt

(with a similar equation for dE± (k)/dt), where the symbols T, A and D represent transfer, rotation (Eq. 9)

and dissipation contributions respectively. Numerical values recorded at several typical high wavenumber

shells are listed in Table III. It can be seen that transfer and dissipation are dominant terms (of opposing
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signs), whereas the rotation term is almost negligible (although nonzero) by comparison. Whereas transfer

and dissipation for the perpendicular component cancel each other almost completely, it is worth noting

that in the parallel component transfer is consistently greater than diss|pation. Furthermore, the overall

rate of change dEll (k)/dt is much greater than dE±(k)/dt. Consequently, we may conclude that at high

wavenumber anisotropic transfer is indeed stronger than the isotropizing effects of dissipation, with the net

result being a departure from local isotropy under rotation.

4. Conclusions and discussion. In this paper we have used direct numerical simulations to study the

response of initially isotropic turbulence subjected to uniform solid-body rotation in the presence of external

energy input by numerical forcing. The grid resolution is 2563, initial Taylor scale Keynolds number is 140

(sufficient for a limited k -5/3 inertial range in the energy spectrum), and rotation rates correspond to initial

turbulent Rossby numbers of 0.0195 and 0.0039. A major emphasis is to examine the detailed structure and

anisotropy characteristics of spectral transfer, as well as the possibility of deviations from local isotropy at

the small scales.

As expected, energy transfer and hence dissipation are greatly reduced by rotation. After a transient

period, the kinetic energy increases approximately linearly with time as forcing energy input grows to exceed

the loss by dissipation. Consistent with a prediction by Zhou [25], The energy spectrum attains a character-

istic k -2 scaling range at intermediate wavenumbers, although the Reynolds numbers are presumably not

high enough for an accurate determination of parameters charactering a rotation-modified identical range.

Several measures of anisotropy are examined. Analysis of component budgets show that pressure-strain

correlations and temporal oscillations due to rotation prevent the Reynolds stress tensor (which is a one-

point characteristic) from developing significant anisotropy over time. However, strong anisotropy is evident

in (i) increased integral length scales along the axis of rotation, (ii) the high wavenumber part of the radial

energy spectrum, and (iii) deviations of one-dimensional longitudinal and transverse spectra from isotropy

relations at high wavenumbers. In addition, vorticity statistics exhibit anisotropic properties suggestive of

the formation of slender vortical structures aligned with the axis of rotation.

Spectral transfer properties are studied in some detail, mainly in terms of triadic interactions in wavenum-

ber space. As expected, rotation greatly weakens the energy cascade at the small scales. Considerable differ-

ences are found between the transfer characteristics of the velocity components parallel and perpendicular

to the axis of rotation. The former has similarities with results in non-rotating turbulence and contributes

dominantly to the reduced energy cascade. By contrast, the latter shows indications of reverse energy trans-

fer from the intermediate scales towards the lowest wavenumbers in the spectrum, primarily as a result of

triadic interactions of a local character.

Anisotropy of the energy spectrum at high wavenumbers is seen to be mainly a result of anisotropic

transfer, although this is opposed by the isotropizing effects of the viscous dissipation. Essentially, whereas

the large scales receive energy from forcing in all coordinate components, this energy is effectively removed

to the small scales only in the component parallel to the axis of rotation.

In summary, we may conclude that the simulation results reported herein represent a situation in which

rotation leads to the departure of the small scales from classical concepts of local isotropy. This is perhaps
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not a total surprise,sinceKolmogorov'shypotheses,likemostturbulencemodelshavetraditionallybeen
formulatedinnon-inertialframesofrcfercncewithoutconsideringtheeffectsofCoriolis forces. Nevertheless,

these findings imply that subgrid-scale modeling procedures for rotating flows must take this anisotropy into

account. For instance, it may be appropriate to use anisotropic filters to define the cutoff between resolved

and subgrid motions, and to use general tensor definitions in subgrid eddy viscosity formulations.

Finally, we note that a similar suppression of spectral transfcr for passive scalar fluctuations will most

likely lead to reduced efficiency in turbulent mixing.
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Appendix. Analysis of early-time transient behavior. As noted in Sec. III.A (sec Fig. 1), the

onsct of rotation causes a marked decrease in both the kinetic energy and (especially) the disspation rate

at early times. Here we address the physical and numerical causes for this transient behavior. Comparisons

with decaying turbulence without forcing but subjected to rotation are also included.
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FIG. 2I. Evolution of turbulence kinetic energy K(t)/K(O) (normalized by initial values) verse t/TE,o in the six sets of

643 simulations discussed in Appendix. Lines A to F are for Cases I to VI respectively, with simulation conditions as listed in

Table H.

From a physical perspective, it is clear that both forcing and rotation have strong effects on the flow.

It should also be noted that at any one time the effects of forcing on the kinetic energy are determined by

the statistical correlation (or phase coupling in wavenumber space) between the instantaneous velocity field

(u_) and the forcing acceleration (f_). In general, this correlation may be instantaneously positive, zero, or

even negative. In this work f, is implemented as a stochastic process (Eswaran & Pope [28]) via a computer-

generated random number sequence. Consequently if a simulation is re-started afresh with a new "seed"
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FIG. 23. Forcing energy input rate (uJi) verse t/TE,o for the first four cases (I to IV, as lines A to 1:)) in Table II.

for the random number sequence then u_ and fi axe expected to become (instantaneously) independent and

hence the energy input rate would be effectively zero. Over time, a statistical coupling does develop between

the velocity and the forcing, resulting ultimately in a positive energy input ratc. Even then, because thc

forcing is applied only to the largest scales (of which there are only a limited number of samplcs in the

solution domain), this energy input is subject to considerable statistical variability in time.

To illustrate these arguments it suffices to consider a set of simulations at lower grid-resolution, each

starting from the same initial conditions but performed with diffcrent parameters. Conditions for such a

series of 643 simulations in six different modes are listed in Table II.
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In all cases the initial conditions were taken from a previous simulation of forced stationary turbulence

without rotation at Taylor-scale Reynolds number 38; and in the rotating cases the initial turbulent Rossby

number is 0.069. Furthermore in each case four independent realizations were carried out and the results

averaged accordingly. Figures 21-23 show, respectively, the evolution of kinetic energy, dissipation rate, and

forcing energy input (the latter excluding the unforced cases V and VI).

Cases I and II represent simulations of forced turbulence without rotation. In Case I the original random

number sequence prior to the simulation restart (t/TE,o = 5.3, marked by vertical dashed line) is continued,

so that quantities vary smoothly with time without abrupt changes. Case II shows the effect of using a new

random number sequence at re-start: the energy input rate drops to zero (as discussed above), causing a

sudden drop of cnergy and dissipation. However, the effect of this numerical artifact is relatively short-lived,

and within about one eddy-turnover timc the energy input catches up to its former levels as a positive

coupling is re-established between the velocity field and the forcing term. A similar effect of the random

number sequences can be identified in the rotating simulations by comparing Cases III and IV.

Comparisons between cases I and III, and between II and IV, illustrate the effects of rotation alone.

It may be seen that rotation causes a much stronger initial decay in energy and dissipation than that due

to new random number sequences in the forcing scheme. At later times both the forcing cnergy input

and dissipation rate maintain quasi-steady levels which are however much lower than those observed in thc

non-rotating cases.

In Cases V and VI the turbulence undergoes viscous decay as the forcing is removed. It is significant,

however, that rotation causes a lesser reduction in kinetic energy overall and a sharper drop in dissipation

rate in the earlier stages. This observation is consistent with the results of Spcziale et aI. [11] who showed

that rotation reduces the decay rate of (unforced) isotropic turbulence csscntially by shutting off the energy

cascade to the smaller scales.
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TABLE II

Terms (all in 10 -5) in the spectral balance (Eq. 19) for velocity components parallel and perpendicular to the axis of

6O

TIl(k) All(k) "DIl(k) dEIl(k)/dt

34.10 -1.123 -29.72 3.257

70 13.76 -0.375 -12.92 0.465

80 6.376 -0.131 -5.691 0.554

90 2.933 -0.047 -2.693 0.247

T±(k) A±(k) -D±(k) dE±(k)/dt

6.532 0.561 -6.946 0.147

2.924 0.187 -3.082 -0.129

1.381 0.065 -1.411 0.035

0.685 0.023 -0.068 0.029

TABLE III

Forcing and rotation options for six sets of 643 simulations discussed in the Appendix.

Usc and mode of forcing

Case I With continuing random number sequence No rotation

Case II With new random number sequence No rotation

Use of rotation

Case III With continuing random number sequence With rotation

Case IV With new random number sequence With rotation

Case V Forcing discontinued With rotation

Forcing discontinuedCase VI No rotation
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